Quartic points on the Fermat quartic over a quadratic extension of $\mathbb{Q}(\sqrt{2})$

Maleeha Khawaja with Frazer Jarvis

University of Sheffield

WINGS

Tuesday $18^{\text {th }}$ April 2023

Quadratic points on the Fermat quartic

$$
\begin{equation*}
x^{4}+y^{4}=1 \tag{4}
\end{equation*}
$$

Theorem (Aigner 1934, Mordell 1967)

The only quadratic points on F_{4} are

$$
(\pm i, 0),(0, \pm i),\left(\epsilon_{1} \frac{1+\epsilon \sqrt{-7}}{2}, \epsilon_{2} \frac{1-\epsilon \sqrt{-7}}{2}\right)
$$

where $\epsilon^{2}=\epsilon_{1}^{2}=\epsilon_{2}^{2}=1$.

Quartic points on the Fermat quartic

$$
\begin{equation*}
x^{4}+y^{4}=1 \tag{4}
\end{equation*}
$$

Theorem (Ishitsuka, Ito and Ohshita 2019)

All points on F_{4} lying in a quadratic extension of $\mathbb{Q}\left(\zeta_{8}\right)=\mathbb{Q}(i, \sqrt{2})$ lie in one of $\mathbb{Q}(i, \sqrt{2}), \mathbb{Q}\left(\sqrt[4]{2}, \zeta_{8}\right), \mathbb{Q}\left(\zeta_{3}, \zeta_{8}\right), \mathbb{Q}\left(\sqrt{-7}, \zeta_{8}\right)$.

- The authors study the 4-torsion points on the Jacobian of F_{4}
- We can also use Mordell's strategy to find

Quartic points on the Fermat quartic

$$
\begin{equation*}
x^{4}+y^{4}=1 \tag{4}
\end{equation*}
$$

Theorem (Ishitsuka, Ito and Ohshita 2019)

All points on F_{4} lying in a quadratic extension of $\mathbb{Q}\left(\zeta_{8}\right)=\mathbb{Q}(i, \sqrt{2})$ lie in one of $\mathbb{Q}(i, \sqrt{2}), \mathbb{Q}\left(\sqrt[4]{2}, \zeta_{8}\right), \mathbb{Q}\left(\zeta_{3}, \zeta_{8}\right), \mathbb{Q}\left(\sqrt{-7}, \zeta_{8}\right)$.

- The authors study the 4-torsion points on the Jacobian of F_{4}
- We can also use Mordell's strategy to find

Theorem (K.-Jarvis 2022)

All quartic points on F_{4} lying in a quadratic extension of $\mathbb{Q}(\sqrt{2})$ lie in one of $\mathbb{Q}(\sqrt{2}, i), \mathbb{Q}(\sqrt{2}, \sqrt{-7}), \mathbb{Q}(\sqrt[4]{2}), \mathbb{Q}(\sqrt[4]{2} i)$.

Extending Mordell

- Let K be a quadratic extension of $L=\mathbb{Q}(\sqrt{2})$
- Suppose

$$
x^{4}+y^{4}=1, \quad x, y \in K
$$

- Let

$$
t=\frac{1-x^{2}}{y^{2}}
$$

- We can rearrange to get
- Either $t \in L$ or $t \in K$

Extending Mordell

- Let K be a quadratic extension of $L=\mathbb{Q}(\sqrt{2})$
- Suppose

$$
x^{4}+y^{4}=1, \quad x, y \in K
$$

- Let

$$
t=\frac{1-x^{2}}{y^{2}}
$$

- We can rearrange to get

$$
x^{2}=\frac{1-t^{2}}{1+t^{2}}, \quad y^{2}=\frac{2 t}{1+t^{2}}
$$

- Either $t \in L$ or $t \in K$

Extending Mordell

- Suppose $t \in L$. Recall

$$
t=\frac{1-x^{2}}{y^{2}}, \quad x^{2}=\frac{1-t^{2}}{1+t^{2}}, \quad y^{2}=\frac{2 t}{1+t^{2}}
$$

- Either $x \in L, y \in L$ or $x / y \in L$
- If $x \in L$ then $u^{2}=\left(1-t^{2}\right)\left(1+t^{2}\right), \quad u \in L$
- This is isomorphic to the elliptic curve E with Cremona label 32a1
- Taking the pre-image of points in $E(L)=E(\mathbb{Q}) \cong \mathbb{Z} / 4 \mathbb{Z}$ gives us points on F_{4} over \mathbb{Q} and $\mathbb{Q}(i)$
- Similar computations in the other cases give us points on F_{4} over $\mathbb{Q}(\sqrt[4]{2})$ and $\mathbb{Q}(i \sqrt[4]{2})$

Extending Mordell

- Suppose $t \in L$. Recall

$$
t=\frac{1-x^{2}}{y^{2}}, \quad x^{2}=\frac{1-t^{2}}{1+t^{2}}, \quad y^{2}=\frac{2 t}{1+t^{2}}
$$

- Either $x \in L, y \in L$ or $x / y \in L$
- If $x \in L$ then $u^{2}=\left(1-t^{2}\right)\left(1+t^{2}\right), \quad u \in L$
- This is isomorphic to the elliptic curve E with Cremona label 32a1
- Taking the pre-image of points in $E(L)=E(\mathbb{Q}) \cong \mathbb{Z} / 4 \mathbb{Z}$ gives us points on F_{4} over \mathbb{Q} and $\mathbb{Q}(i)$
- Similar computations in the other cases give us points on F_{4} over $\mathbb{Q}(\sqrt[4]{2})$ and $\mathbb{Q}(i \sqrt[4]{2})$

Extending Mordell

- Suppose $t \in L$. Recall

$$
t=\frac{1-x^{2}}{y^{2}}, \quad x^{2}=\frac{1-t^{2}}{1+t^{2}}, \quad y^{2}=\frac{2 t}{1+t^{2}}
$$

- Either $x \in L, y \in L$ or $x / y \in L$
- If $x \in L$ then $u^{2}=\left(1-t^{2}\right)\left(1+t^{2}\right), \quad u \in L$
- This is isomorphic to the elliptic curve E with Cremona label 32a1
- Taking the pre-image of points in $E(L)=E(\mathbb{Q}) \cong \mathbb{Z} / 4 \mathbb{Z}$ gives us points on F_{4} over \mathbb{Q} and $\mathbb{Q}(i)$
- Similar computations in the other cases give us points on F_{4} over $\mathbb{Q}(\sqrt[4]{2})$ and $\mathbb{Q}(i \sqrt[4]{2})$

Extending Mordell

- Suppose $t \in K, t \notin L$
- Let $\operatorname{minpol}_{L}(t)=t^{2}+\beta t+\gamma, \quad \beta, \gamma \in L$
- Let $A=\left(1+t^{2}\right) x y$. We can also write

$$
A=\lambda+\mu t, \quad \lambda, \mu \in L
$$

- We can square both expressions for A :

$$
\begin{equation*}
(\lambda+\mu t)^{2}-2 t\left(1-t^{2}\right)=\operatorname{minpol}_{L}(t)(\rho+\sigma t) \tag{1}
\end{equation*}
$$

- We get a point $(\lambda+\mu(-\rho / \sigma),-\rho / \sigma)$ on the elliptic curve

$$
E: Y^{2}=-2 x^{3}+2 X
$$

Extending Mordell

- Suppose $t \in K, t \notin L$
- Let minpol $L_{L}(t)=t^{2}+\beta t+\gamma, \quad \beta, \gamma \in L$
- Let $A=\left(1+t^{2}\right) x y$. We can also write

$$
A=\lambda+\mu t, \quad \lambda, \mu \in L
$$

- We can square both expressions for A :

$$
\begin{equation*}
(\lambda+\mu t)^{2}-2 t\left(1-t^{2}\right)=\operatorname{minpol}_{L}(t)(\rho+\sigma t) \tag{1}
\end{equation*}
$$

- We get a point $(\lambda+\mu(-\rho / \sigma),-\rho / \sigma)$ on the elliptic curve

$$
E: Y^{2}=-2 X^{3}+2 X
$$

defined over $L ; E$ is the elliptic curve with Cremona label 64a1!

Extending Mordell

- Squaring and equating the above leads to

$$
\begin{equation*}
(\lambda+\mu t)^{2}-2 t\left(1-t^{2}\right)=\operatorname{minpol}_{L}(t)(\rho+\sigma t) \tag{2}
\end{equation*}
$$

- We get a point $(\lambda+\mu(-\rho / \sigma),-\rho / \sigma)$ on the elliptic curve

$$
E: Y^{2}=-2 X^{3}+2 X
$$

defined over $L ; E$ is the elliptic curve with Cremona label 64a1!

- Let $B=\left(1+t^{2}\right) y$. We similarly get a $L-$ point on the elliptic curve with Cremona label 32a1
- Recall that both elliptic curves have finite rank over L
- This gives us finitely many possibilities for t hence finitely many equations to solve
- Solving these equations gives us points on F_{4} defined over $\mathbb{Q}(\sqrt{2}, \sqrt{-7})$ and $\mathbb{Q}(\sqrt{2}, i)$

Extending Mordell

- Squaring and equating the above leads to

$$
\begin{equation*}
(\lambda+\mu t)^{2}-2 t\left(1-t^{2}\right)=\operatorname{minpol}_{L}(t)(\rho+\sigma t) \tag{2}
\end{equation*}
$$

- We get a point $(\lambda+\mu(-\rho / \sigma),-\rho / \sigma)$ on the elliptic curve

$$
E: Y^{2}=-2 X^{3}+2 X
$$

defined over $L ; E$ is the elliptic curve with Cremona label 64a1!

- Let $B=\left(1+t^{2}\right) y$. We similarly get a L-point on the elliptic curve with Cremona label 32a1
- Recall that both elliptic curves have finite rank over L
- This gives us finitely many possibilities for t hence finitely many equations to solve

Extending Mordell

- Squaring and equating the above leads to

$$
\begin{equation*}
(\lambda+\mu t)^{2}-2 t\left(1-t^{2}\right)=\operatorname{minpol}_{L}(t)(\rho+\sigma t) \tag{2}
\end{equation*}
$$

- We get a point $(\lambda+\mu(-\rho / \sigma),-\rho / \sigma)$ on the elliptic curve

$$
E: Y^{2}=-2 X^{3}+2 X
$$

defined over $L ; E$ is the elliptic curve with Cremona label 64a1!

- Let $B=\left(1+t^{2}\right) y$. We similarly get a L-point on the elliptic curve with Cremona label 32a1
- Recall that both elliptic curves have finite rank over L
- This gives us finitely many possibilities for t hence finitely many equations to solve
- Solving these equations gives us points on F_{4} defined over $\mathbb{Q}(\sqrt{2}, \sqrt{-7})$ and $\mathbb{Q}(\sqrt{2}, i)$

More points on the Fermat quartic?

- The key in Mordell's proof: the elliptic curves 32a1 and 64a1 have rank 0 over \mathbb{Q}
- These elliptic curves have rank 0 over $\mathbb{Q}(\sqrt{2})$
- Let L be a number field such that the elliptic curves have rank 0 over L
- Can use Mordell's strategy to find all points on F_{4} lying in a quadratic extension of L

Other quartic points on the Fermat quartic

- Pedro-José Cazorla Garcia pointed out that

$$
(\sqrt{3})^{4}+2^{4}=(\sqrt{5})^{4}
$$

- The elliptic curve 32 a1 has rank 0 over $\mathbb{Q}(\sqrt{ } 3)$ and the elliptic curve 64 a1 has rank 1 over $\mathbb{Q}(\sqrt{3})$
- The elliptic curve 32a1 has rank 1 over $\mathbb{Q}(\sqrt{5})$ and the elliptic curve 64a1 has rank 0 over $\mathbb{Q}(\sqrt{5})$
- Mordell's strategy won't work here!

Other quartic points on the Fermat quartic

- Pedro-José Cazorla Garcia pointed out that

$$
(\sqrt{3})^{4}+2^{4}=(\sqrt{5})^{4}
$$

- The elliptic curve 32 a1 has rank 0 over $\mathbb{Q}(\sqrt{3})$ and the elliptic curve 64 a1 has rank 1 over $\mathbb{Q}(\sqrt{3})$
- The elliptic curve 32a1 has rank 1 over $\mathbb{Q}(\sqrt{5})$ and the elliptic curve 64a1 has rank 0 over $\mathbb{Q}(\sqrt{5})$
- Mordell's strategy won't work here!

Other quartic points on the Fermat quartic

- Pedro-José Cazorla Garcia pointed out that

$$
(\sqrt{3})^{4}+2^{4}=(\sqrt{5})^{4}
$$

- The elliptic curve 32a1 has rank 0 over $\mathbb{Q}(\sqrt{3})$ and the elliptic curve 64a1 has rank 1 over $\mathbb{Q}(\sqrt{3})$
- The elliptic curve 32a1 has rank 1 over $\mathbb{Q}(\sqrt{5})$ and the elliptic curve 64a1 has rank 0 over $\mathbb{Q}(\sqrt{5})$
- Mordell's strategy won't work here!

Thanks for listening :)

